organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Arzu Özek,^a* Süheyla Yüce,^a Çiğdem Albayrak,^b Mustafa Odabaşoğlu^b and Orhan Büyükgüngör^a

^aDepartment of Physics, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, and ^bDepartment of Chemistry, Ondokuz Mayıs University, TR-55139 Samsun, Turkey

Correspondence e-mail: arzuozek@omu.edu.tr

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.003 Å R factor = 0.053 wR factor = 0.145 Data-to-parameter ratio = 14.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

1-[(4-Nitrophenylamino)methylene]naphthalen-2(1*H*)-one

The molecule of the title compound, $C_{17}H_{12}N_2O_3$, is nearly planar and adopts a keto-amine tautomeric form, with an intramolecular N-H···O hydrogen bond.

Received 5 April 2004 Accepted 14 April 2004 Online 24 April 2004

Comment

Schiff bases have been used widely as ligands in the field of coordination chemistry (Calligaris *et al.*, 1972). Schiff base compounds show two possible tautomeric forms, namely the phenol–imine and keto–amine forms. In the solid state, the keto–amine tautomer has been found in naphthaldimine (Özek *et al.*, 2004; Odabaşoğlu *et al.*, 2004; Hökelek *et al.*, 2000; Ünver *et al.*, 2002), while the phenol–imine tautomer is found in salicylaldimine Schiff bases (Kaitner & Pavlovic, 1996; Yıldız *et al.*, 1998; Elmalı & Elerman, 1998; Elmalı *et al.*, 1998, 1999; Dey *et al.*, 2001; Yang & Vittal, 2003; Karadayı *et al.*, 2003; Ersanlı, Odabaşoğlu *et al.*, 2004; Ersanlı, Albayrak *et al.*, 2004).

In the title compound, (I), the keto-amine tautomer is favoured over the phenol-imine form (Fig. 1 and Table 1), and there is an intramolecular N1-H1...O1 hydrogen bond (Table 2). The short C2-O1 and C1-C11 bonds can be considered as C=O and C=C double bonds, respectively. This fact, together with the very short C3–C4 bond, suggests the presence of a significant quinoidal effect. A similar quinoidal effect was observed for 1-[(3-hydroxypyridin-2-ylamino)methylene]-1*H*-naphthalen-2-one [C=0]1.276 (2) Å; Özek et al., 2004], 1-[N-(p-hydroxyphenyl)aminomethylidene]naphthalen-2(1H)-one propan-1-ol hemisolvate] [C=O = 1.292 (2) and 1.295 (2) Å; Odabaşoğlu et al., 2004] and *N-n*-propyl-2-oxo-1-naphthylidenemethylamine [C==O = 1.277 (2) Å; Kaitner & Pavlovic, 1996]. The ketoamine form is also dominant in N-(α -naphthyl)-2-oxo-1naphthaldimine [C=O = 1.287(5) Å; Gavranic *et al.*, 1996].

The study of Schiff bases has led to the proposal that molecules exhibiting thermochromism are planar, while those exhibiting photochromism are non-planar. This planarity of the molecule allows the proton to be transferred through the hydrogen bond in the ground state with a small energy requirement (Hadjoudis *et al.*, 1987). The molecule of (I) is almost planar, with a dihedral angle of 4.63 (1)° between ring A (atoms C12–C17) and ring B (atoms C1–C5/C10). The N–

H···O hydrogen-bonded ring is almost planar and is coupled with the naphthaldimine ring. The C11–N1 bond length and C11–N1–C12 bond angle are 1.306 (3) Å and 126.35 (19)°, respectively, compared with 1.3237 (19) Å and 125.96 (16)° in 1-[(3-hydroxypyridin-2-ylamino)methylene]-1*H*-naphthalen-2-one (Özek *et al.*, 2004).

Experimental

Compound (I) was prepared as described by Odabaşoğlu *et al.* (2003), using 4-nitroaniline and 2-hydroxy-1-naphthol as starting materials. Crystals of (I) were obtained from an acetone solution by slow evaporation (yield 82%, m.p. 492–494 K).

Crystal data

C ₁₇ H ₁₂ N ₂ O ₃	$D_x = 1.450 \text{ Mg m}^{-3}$
$M_r = 292.29$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 5610
a = 8.0124 (13) Å	reflections
b = 7.3743 (8) Å	$\theta = 1.8-26.9^{\circ}$
c = 22.690 (4) Å	$\mu = 0.10 \text{ mm}^{-1}$
$\beta = 93.043 (13)^{\circ}$	T = 293 (2) K
$V = 1338.8 (4) \text{ Å}^3$	Plate, red
Z = 4	$0.60 \times 0.30 \times 0.06 \text{ mm}$
Data collection	
Stoe IPDS-II diffractometer	2923 independent reflections
ω scans	1355 reflections with $I > 2\sigma(I)$
Absorption correction: by integra-	$R_{\rm int} = 0.124$
tion (X-RED32; Stoe & Cie,	$\theta_{\rm max} = 27.1^{\circ}$
2002)	$h = -10 \rightarrow 10$

 $T_{\min} = 0.954, T_{\max} = 0.993$ 10 123 measured reflections

Refinement

Refinement on F^2 H-atom parameters constrained $R[F^2 > 2\sigma(F^2)] = 0.053$ $w = 1/[\sigma^2(F_o^2) + (0.0772P)^2]$ $wR(F^2) = 0.145$ where $P = (F_o^2 + 2F_c^2)/3$ S = 0.82 $(\Delta/\sigma)_{max} < 0.001$ 2923 reflections $\Delta\rho_{max} = 0.18$ e Å⁻³199 parameters $\Delta\rho_{min} = -0.21$ e Å⁻³

 $k = -8 \rightarrow 9$

 $l = -28 \rightarrow 28$

Table 1

Selected geometric parameters (Å, °).

C1-C11	1.396 (3)	C4-C5	1.419 (3)
C1-C2	1.430 (3)	C5-C10	1.411 (3)
C1-C10	1.458 (3)	C11-N1	1.306 (3)
C2-O1	1.289 (3)	C12-N1	1.398 (3)
C2-C3	1.431 (3)	C15-N2	1.455 (3)
C3-C4	1.335 (3)		
C11-C1-C2	118.7 (2)	N1-C11-C1	123.8 (2)
C11-C1-C10	121.68 (19)	C13-C12-N1	123.4 (2)
O1-C2-C1	122.4 (2)	C17-C12-N1	117.28 (19)
01-C2-C3	119.3 (2)	C11-N1-C12	126.35 (19)
C11-C1-C2-O1	2.2 (3)	C10-C1-C11-N1	178.5 (2)
C2-C1-C11-N1	-2.1(3)	C1-C11-N1-C12	-178.4 (2)

Table 2

Hydrogen-bonding geometry (Å, °).

$\overline{D-\mathrm{H}\cdots A}$	<i>D</i> -H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
N1-H1···O1	0.86	1.85	2.543 (2)	137

A view of (I), with the atom-numbering scheme and 50% probability displacement ellipsoids. The dashed line indicates the intramolecular hydrogen bond.

All H atoms were refined using a riding model (C–H = 0.93 Å and N–H = 0.86 Å) with U_{iso} (H) = 1.2 U_{eq} (parent atom).

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1998).

References

- Calligaris, M., Nardin, G. M. J. & Randaccio, C. (1972). Coord. Chem. 7, 385–389.
- Dey, D. K., Dey, S. P., Elmalı, A. & Elerman, Y. (2001). J. Mol. Struct. 562, 177– 184.
- Elmalı, A. & Elerman, Y. (1998). J. Mol. Struct. 442, 31-37.
- Elmalı, A., Elerman, Y. & Zeyrek, C. T. (1998). J. Mol. Struct. 443, 123-130.
- Elmalı, A., Kabak, M. & Elerman, Y. (1999). J. Mol. Struct. 484, 229-234.
- Ersanlı, C. C., Albayrak, Ç., Odabaşoğlu, M. & Erdönmez, A. (2004). Acta Cryst. E60, 0389–0391.
- Ersanlı, C. C., Odabaşoğlu, M., Albayrak, Ç. & Erdönmez, A. (2004). Acta Cryst. E60, 0264–0266.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1998). WinGX. University of Glasgow, Scotland.
- Gavranic, M., Kaitner, B. & Mestrovic, E. (1996). J. Chem. Crystallogr. 26, 23-28.
- Hadjoudis, E., Vitterakis, M. & Maviridis, I. M. (1987). *Tetrahedron*, **43**, 1345–1360.
- Hökelek, T., Kılıç. Z., Işıklan, M. & Toy, M. (2000). J. Mol. Struct. 523, 61–69. Kaitner, B. & Pavlovic, G. (1996). Acta Cryst. C52, 2573–2575.
- Karadayı, N., Gözüyeşil, S., Güzel, B. & Büyükgüngör, O. (2003). Acta Cryst. E59, o161–o163.
- Odabaşoğlu, M., Albayrak, Ç. & Büyükgüngör, O. (2004). Acta Cryst. E60, 0142-0144.
- Odabaşoğlu, M., Albayrak, Ç. & Büyükgüngör, O. & Lönneche, P. (2003). Acta Cryst. C59, o616–o619.
- Özek, A., Yüce, S., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2004). Acta Cryst. E60, 0356–0358.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.
- Ünver, H., Kabak, M., Zengin, D. M. & Durlu, T. N. (2002). J. Chem. Crystallogr. 31, 203–209.
- Yang, C.-T. & Vittal, J. (2003). Inorg. Chim. Acta, 344, 65-76.
- Yıldız, M., Kılıç. Z. & Hökelek, T. (1998). J. Mol. Struct. 441, 1-10.